Distribution System Contamination Pathways and the Contaminants

TCR/Distribution System
Webcast
January 17, 2007

Overview

 Background Information on the Pathways through which Contaminants can Enter the Distribution System

Contaminants of Concern

Contamination Pathways with External Sources

Cross-Connections and Backflow

Cross-connections

- Physical connections between potable water and a non-potable source that allow contaminants to enter the distribution system
- Often established intentionally without the user understanding the potential risks

Backflow

- Reversal in flow when the pressure in the non-potable source exceeds the pressure in the potable water
- Pressure differentials are common occurrences even in wellmaintained systems
- Contamination can result during the simultaneous occurrence of an unprotected cross-connection and a pressure differential

Cross-Connections and Backflow

Internal Deliberative - Do Not Cite, Quote or Distribute

Contaminants of Concern from Backflow

Range of Contaminants

 Can come from many different sources and include metals, radionuclides, viruses, protozoa, bacteria (including indicators), hydrocarbons, and household and industrial chemicals

Common Chemical Contaminants

Pesticides (e.g., chlordane), herbicides, insecticides, detergents

Common Microbial Contaminants

 Norovirus, Giardia, Shigella, E. coli, Cryptosporidium, echovirus, and other sewage organisms

Intrusion

- Contaminants can Enter the System through Intrusion when Portals for Contamination Exist (e.g., leaks) and Low or Negative Pressures Occur
 - It is common for water systems to lose more than 10% of finished water through leakage
 - Faulty joint seals and unprotected air vents can also allow entry of contaminated water
 - One survey showed that at least 20% of the surveyed systems have some piping located below the water table
 - Causes of low pressure may be common to distribution systems

Intrusion

Contamination During Main Repair/Replacement

- Main Repairs are often Conducted in Conditions Favorable to Contamination
 - Return to service as quickly as possible
 - Trenches are flooded or below the water table
- Estimated 237,000 Main Breaks per Year in the U.S.
- Estimated 13,200 Miles of New Mains Installed per Year in the U.S.
- Approximately 0.5% of Existing Pipe is Replaced each Year in the U.S.

Contamination During Main Repair/Replacement

Contaminants of Concern from Intrusion and Main Repairs

- Sewage Organisms
 - In one study eight utilities sampled soil and water surrounding pipelines
 - Viruses detected in 56% of samples, including the vaccine strain of Poliovirus, Norwalk and Hepatitis A
 - Fecal coliforms detected in approximately 50% of samples, with levels as high as 10,000/100 grams of soil
- Pesticides
- Gasoline-Range Organics and Solvents
- Pharmaceuticals

Contamination Pathway with Both Internal and External Sources

Covered Storage Vessels

External Contamination

- Non-potable material could enter the system through deteriorated or improperly designed infrastructure
- One tank inspection firm reported that 20–25% of tanks have serious sanitary defects; 80–90% have minor sanitary flaws
- Human and animal access can also lead to contamination risks

Internal Contamination

- Contaminants can accumulate in sediments, scales and biofilms and be released during hydraulic disturbances
- Aging of water during storage can lead to water quality problems, including the potential for Disinfection Byproducts (DBPs) formation
- Some contaminants can leach from improperly applied lining or coating material under certain water quality conditions

Covered Storage Vessels

Contaminants of Concern from Storage Vessels

External Contamination

Sewage organisms – e.g., E. coli, norovirus, Cryptosporidium

Internal Contamination

- Biofilm organisms e.g., Mycobacterium avium Complex, Legionella
- Disinfection byproducts
- Accumulated inorganics e.g., radium, arsenic
- Leached organics and inorganics e.g., cadmuim, chromium, aluminum, vinyl chloride, polyaromatic hydrocarbons

Contamination Pathway with Internal Sources

Biofilms

- A complex mixture of microbes, organic and inorganic material attached to the inner surfaces of distribution systems
 - Present in all distribution systems typical to control, not eliminate
- Some opportunistic pathogens grow within biofilms
- Some pathogens protected from disinfectants within biofilms
- Released during hydraulic or water quality disturbances
- Can also accumulate some chemical contaminants and microbial nutrients

Biofilms

Contaminants of Concern in Biofilms

- Opportunistic pathogenic bacteria capable of growth in biofilms
 - Legionella pneumophila
 - Mycobacterium avium Complex (MAC)
 - Pseudomonas aeruginosa
- Primary pathogens which have been found in biofilms, but may not necessarily grow include:
 - Helicobacter pylori
 - Escherichia coli, some of which are pathogenic
 - Poliovirus 1
 - Coxsackie virus B
 - Cryptosporidium

Other Issues of Potential Concern

Corrosion

 Physicochemical process which releases metals (e.g., iron) from distribution system materials

Nitrification

Microbial conversion of ammonia to nitrite, then to nitrate

Leaching

Release of some chemical components (e.g., metals, vinyl chloride)
 from materials as a result of water quality changes

Inorganics accumulation

 Accumulation of inorganics in scales, sediments and biofilms released during water chemistry or hydraulic disturbances

Permeation

 Migration of hydrocarbons through plastic materials into the finished distribution system water